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ABSTRACT 

Tetrahedral mesh generation algorithm, as a prerequisite of many soft tissue simulation methods, becomes very 
important in the virtual surgery programs because of the real-time requirement. Aiming to speed up the computation in 
the simulation, we propose a revised Delaunay algorithm which makes a good balance of quality of tetrahedra, boundary 
preservation and time complexity, with many improved methods. Another mesh algorithm named Space-Disassembling 
is also presented in this paper, and a comparison of Space-Disassembling, traditional Delaunay algorithm and the revised 
Delaunay algorithm is processed based on clinical soft-tissue simulation projects, including craniofacial plastic surgery 
and breast reconstruction plastic surgery.  
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1. INTRODUCTION 
Soft-tissue simulation methods, including Center line [1], Mass-spring [2] and FEM (Finite Element Method) [3], 
become very popular in virtual surgery programs of biomedical field. Methods like FEM could generate results with high 
accuracy, but is more difficult to meet the real-time requirement in virtual reality of medical process, because of the time 
complexity of matrix computation in this method. 

After research and analysis, we found the quality of tetrahedral mesh of the soft tissue is one of the bottlenecks in 
improving the computation speed. In order to generate tetrahedral mesh with good quality, we compared several mesh 
algorithms including Space-Disassembling [4], Delaunay algorithms and Advancing Front Technology [5], and then 
propose a Space-Disassembling algorithm and a revised Delaunay algorithm to realize the discretization of the soft tissue 
methods. The first algorithm is very efficient and leads to good mesh inside the soft tissue, while the second one makes a 
good balance of boundary preservation, quality of tetrahedra and time complexity. And to make the Delaunay algorithm 
qualified for the FEM requirements, many improved methods including point random disarrangement, radial method and 
visibility check, are designed and implemented in the revised Delaunay algorithm to improve its performance. 

 

2. SPACE-DISASSEMBLING MESH ALGORITHM 
Space-Disassembling Algorithm is an intuitive mesh algorithm with a low time complexity, which could generate very 
nice mesh inside the object, but doesn't perform well on the surface. 

The first step of this algorithm is cutting the bound box of the original object into small cubes, the number of which 
could be described as the granularity of the mesh. All of the small cubic elements could be divided into three categories: 
cubes outside the object, cubes inside and cubes on the surface (Fig.1). Exterior cubes should be abandoned and the 
remain cubes should be cut into five tetrahedra in the similar way which leads to nice mesh inside the object, and the cut 
methods of two adjacent cubes should be symmetrical, in order to eliminate the creation of stationary points (Fig.2). 
After re-mesh of the boundary tetrahedra, a simple mesh of the original object is generated by the Space-Disassembling 
Mesh Algorithm. 

One problem of this algorithm is it cannot preserve all the boundary information including points and triangle facets. It 
could only preserve the topology of the original object in rough. We used this algorithm at the beginning of the Soft-
tissue simulation research, and it worked very well when the boundary preservation was not a pivotal requirement. An 
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experiment which is used in the craniofacial plastic surgery could be found in the Experiments part of this paper. 
However, after the boundary preservation and good quality of all tetrahedra become more and more important, Delaunay 
algorithm turns out more suitable and effective. 

 
 

3. REVISED DELAUNAY ALGORITHM 
Delaunay algorithm is the general name of all algorithms whose mesh results accord with the Delaunay criterion raised 
by B. Delaunay in 1934, which is based on Voronoi diagrams (also known as Dirichlet tessellations) [6]. This criterion 
states that if the circum-sphere of each simplex in a triangulation contains only the n+1 defining points of the simplex (n 
represents the number of dimension of the input data), the mesh constructed by these simplexes is Delaunay mesh.  

There is a basic concept in all Delaunay algorithms called Delaunay core of point P, which represents a set of tetrahedra 
in the mesh whose circum-spheres contain point P (Fig.3.a). According to the Delaunay theory, point P and the Delaunay 
core of this point are the part of the mesh which does not meet the Delaunay criterion. In order to eliminate this 
inconsistency, a reconstruction of the Delaunay core and the point is necessary, for which we employed the point-
insertion method, one of the most efficient approaches in Delaunay algorithms, to break up all the tetrahedra inside the 
Delaunay core, and join the new point and the surface of the Delaunay core together to generate a new mesh (Fig.3.b). 
After this reconstruction, the new point has been inserted to the original mesh successfully, and the mesh still meets the 
Delaunay criterion. 

In order to generate better tetrahedral mesh in FEM, we propose a novel Delaunay algorithm with many improved steps 
and methods, which optimize the mesh result prominently on the boundary preservation and quality of all tetrahedra. The 
entire process of nine steps of this algorithm leads to better mesh compared with Space-Disassembling Algorithm and 
traditional Delaunay algorithms separately. 

               
(a)                                                                                   (b) 

Fig. 3.a. Example of Delaunay core of point P represented in 2 dimensions 

     
Fig. 1.  Three categories of cubic elements after bound 

box cutting. 
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Fig. 2.  Cut methods of two adjacent cubes should be 

symmetrical, in order to eliminate the creation of 
stationary points. 
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Fig. 3.b. New mesh could be constructed with the surface of Delaunay core and point P. 

3.1 Segmentation and 3D Surface Modeling 

The original pixel data from clinical medical images could not be applied into deformation simulation directly. The 
organs should be separated from other tissues and modeled as 3D Triangle Surface first. 

We use the Balloon segmentation algorithm [7] and Butterfly subdivision algorithm [8] to generate the surface data. 
Balloon segmentation (Fig.4.a), compared with Marching-cube meshing algorithm [9] (Fig.4.b), is a dynamical 
volumetric segmentation algorithm by approximating a sphere using polygons. The basic idea of balloon algorithm is to 
add image forces on an initial spherical mesh data, making it expand or shrink towards the surface of soft tissue. The 
mesh will adjust its shape to conform to the boundary of region of interest as closely as possible after iterating the 
calculation for specified times, just like a balloon. After this step, a smooth triangle surface with boundary information of 
organs in the medical images could be generated, based on which, we could check the boundary preservation criteria of 
all these tetrahedral mesh algorithms. 

    
(a)                                                                                   (b) 

Fig. 4.a. Surface generated by Balloon segmentation algorithm and smoothed by Butterfly subdivision algorithm 

Fig. 4.b. Surface generated by Marching-cube meshing algorithm and smoothed by Butterfly subdivision algorithm 

3.2 Surface Triangle Mesh Optimization 

If the boundary tetrahedra density and the interior tetrahedra density must match each other, or the boundary tetrahedra 
density must be larger than that of the interior tetrahedra, considering the deformation of the surface should be more 
obvious, a surface triangle mesh optimization should be processed before the Delaunay algorithm [10]. 

The optimization is based on the granularity of the Delaunay mesh. If the surface triangle mesh is sparse while the 
granularity of the expected mesh is large, respectively. A surface triangle subdivision should be performed before the 
Delaunay mesh construction. On the other hand, if the surface triangle mesh is dense while the granularity of the 
expected mesh is small, a surface triangle simplification should be performed before the mesh construction. After this 
step, the final mesh could be well-proportioned on the boundary and inside the source object. 

3.3 Initial Tetrahedral Mesh Construction 

The pivotal part of the revised Delaunay algorithm is iteratively inserting new point into current mesh. So an initial 
tetrahedral mesh which contains the input object should be constructed first. Considering the optimization of the 
following steps, we choose an approach as follow. 

First, the circum-sphere of the object’s bound box, which is a cuboid, should be calculated. Then, the bound box of the 
circum-sphere could be calculated, which should be a cube. After that, we mesh the bound box of the circum-sphere into 
five tetrahedra as in the Space-Disassembling Algorithm. Then the initial tetrahedral mesh which contains the original 
object is constructed completely. 

3.4 Presetting Interior Points Generation 

In this step, possible points which could be inserted into the initial mesh would be prepared. The boundary points in the 
input data should be contained in the mesh considering the boundary preservation requirement, but only inserting 
boundary points into the initial mesh is far from enough to generate nice mesh. In order to make the mesh more regular, 
points inside the original object should be generated as well, the method of which is to cut the bound box of the circum-
sphere which is calculated in the first step into smaller cubic elements, as we did in the Space-Disassembling Algorithm. 
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Then all vertices of the cubic elements would be the presetting interior points which could be inserted into the mesh in 
the following steps. 

3.5 Presetting Interior Points Random Disarrangement 

The presetting interior points generated in the forth step are the vertices of the cubic elements which are all on special 
positions. According to Cavalcanti and Mello [11], points on special positions, like more than four points co-sphercity 
and more than three points co-planarity, could cause the failure of the algorithm easily. A research about points on 
special positions was processed after we implemented this revised Delaunay algorithm. We chose a kidney data which 
contains 458 boundary points as an input. First, we turned off this random disarrangement step and 5551 tetrahedra were 
generated. Then, we turned on this step, and more than 6590 tetrahedra were generated based on the same input, which 
means more points could be inserted into the mesh to form more tetrahedra after random disarrangement. 

The method to implement this step is very intuitive. A random vector with the value about 10-4 based on the input data 
would be added on all presetting interior points, which solves the problem of points on special positions effectively. 

3.6 Interior Points Generated Based on Radial Method 

In this step, real interior points would be separated from the output of the fifth step, which contains both points inside 
and outside the source object. The method we employed to separate them is called radial method which is a classical 
method to solve this kind of problem in two dimensions. 

The pivotal part of this method is quite straightforward. If a radial goes through an object, several points of intersection 
would be generated (Fig. 5). An assistant variable denoted as Counter with an initial value 0 could help to record the 
relative position of each section of the radial. When the radial goes into the object from the outside, the Counter variable 
would be increased by 1. When the radial goes from the inside of the object to the outside, the Counter variable would be 
decreased by 1. After this process, the Counter variable could help us separate all points on the radial. In this way, we 
could separate the points from the output of the third step with a radial going across it, and then all points outside the 
object should be deleted. All points which would be inserted into the initial mesh, including boundary points and interior 
points have been prepared. 

 
Fig. 5.  Radial method in 2 dimensions could record the relative position of each section of the radial, which works well in 3 

dimensions as well. 

3.7 Delaunay Mesh Construction 

In this step, both boundary points and interior points would be inserted into the initial mesh iteratively as stated above. In 
this revised Delaunay algorithm, we raise some methods to optimize the traditional point-insertion process, which could 
reduce the time complexity and eliminate the possibility of interactive tetrahedra generation effectively. 

For each point to be inserted, the Delaunay core should be found first. An intuitive way to get the Delaunay core for 
point P is to go through all tetrahedra in the mesh and check whether it meets the definition of Delaunay core of point P. 
This process could be very slow, and could cause serious tetrahedra overlap problem (Fig. 6.a). The method to generate 
the Delaunay core in the revised algorithm is to find the tetrahedron T0 which contains point P first, and then recursively 
check every tetrahedron which is adjacent to T0 by triangle faces whether the circum-sphere of it contains point P or not 
until no more tetrahedra could be added into the Delaunay core. 
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The background grid technology [12] could help find a set of tetrahedra which may contain point P efficiently. For each 
tetrahedron in this set, we could construct four tetrahedra temporarily with the point P and the four triangle faces of it. 
Then a comparison of volume of the tetrahedron in the set with the sum of volumes of the four tetrahedra could help find 
the first tetrahedron in the Delaunay core of point P. 

Actually, this method of generating Delaunay core does not totally meet the Delaunay theory. By weakening Delaunay 
theory, this method helps the elimination of time complexity and the possibility of tetrahedra overlap distinctively. The 
topology of the Delaunay core of point P should be examined before breaking all tetrahedra in it, because bad topology 
of Delaunay core could lead to tetrahedra overlap as well (Fig. 6.b) [13]. In order to solve this problem, the normal 
vector of each boundary face of the Delaunay core should be calculated. The direction of the vector would be defined as 
positive if it points into the core; otherwise, it would be defined as negative. If the point P is on the positive side of all 
boundary faces of the Delaunay core, breaking tetrahedra in the core would be safe, which means no tetrahedra overlap 
would be caused. If point P is on the negative side of some boundary faces, tetrahedra containing this face in the 
Delaunay core should be deleted. Processing this method recursively for each boundary face of the core would make all 
tetrahedra in the mesh valid without any element overlap, and also could find and eliminate those tetrahedra whose 
volume equal to zero. After this method, reconstruction of tetrahedra in the core, which is the last thing to do in this step, 
could be processed as stated above. And the problems about the Delaunay Cores in Fig.6 could be eliminated, and the 
result could be found in Fig.7 respectively. 

                                             
 

 

 

 

 

3.8 Boundary Preservation 

In the eighth step of the algorithm, some points may be deleted when the tetrahedra of the Delaunay core are broken 
(Fig. 6.c, Fig.7.c). If the points are boundary from the input data, it should be recorded and re-inserted into the mesh. 

In the point-insertion process, neighbor points would be more easily to be joined together, which may lead to surface 
topology mistakes (Fig.8). To solve this problem, we need to process the radial method stated above for the geometric 
center points of all tetrahedra to separate them into two categories: tetrahedra inside the object and tetrahedra outside of 
the object. All tetrahedra with exterior centers should be deleted to preserve the basic surface topology of the object. 

 

Fig.6.a. (Left-up) Possible result of intuitive Delaunay core 
generation could lead to tetrahedra overlap. 

Fig.6.b. (Right-up) Possible result of revised Delaunay core 
generation could lead to tetrahedra overlap. 

Fig.6.c (Bottom) Possible result of revised Delaunay core 
generation could lead to boundary point lost. 

Fig.7.a. (Left-up)  Reconstruction result of the intuitive 
generation. 

Fig.7.b. (Right-up)  Reconstruction result after vision check. 

Fig.7.c (Bottom) Reconstruction result which could lead to 
boundary point lost. 
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Fig.8.  Neighbor-point joining leads to surface topology mistakes of the object which could be solved by remove the 

tetrahedra whose center points are outside of the object. 

3.9 Sliver Tetrahedra Elimination 

Sliver tetrahedra, which would cause failure of the FEM computation easily, could be formed in the last three steps, 
especially on the surface of the object. Number of sliver tetrahedra is an important part of the tetrahedral mesh 
benchmark, which makes the elimination of sliver tetrahedra very necessary. 

The definition of sliver tetrahedra in this algorithm is based on the standard deviation (SD) of sides in the tetrahedron. 
First we define a maximum value of sides SD as A0, and then calculate the sides SD for each tetrahedron. If the SD is 
greater than A0, the tetrahedron should be combined with its neighbor and a re-mesh should be generated until all 
tetrahedra in the mesh are not sliver. 

 

4. EXPERIMENTS AND APPLICATIONS 
We compared three tetrahedral mesh algorithms, including space-disassembling algorithm, traditional Delaunay 
algorithm and the revised Delaunay algorithm, based on some pivotal criteria (Table. 1). The algorithm chosen to 
represent traditional Delaunay algorithm is vtkDelaunay3D in VTK (Visualization Toolkit) [14]. The first input object is 
a kidney surface data containing 458 boundary points and 960 boundary faces. The second input object is a breast 
surface data containing 994 boundary points and 2816 boundary face. 

Table. 1 Comparison of space-disassembling algorithm, traditional Delaunay algorithm and revised Delaunay algorithm 

Space disassembling Traditional 
Delaunay Revised Delaunay Mesh Criteria 

kidney breast kidney breast kidney breast 
Output points 431 2065 -- -- 538 1629 

Output 
tetrahedra 1303 7052 2151 7480 2100 7753 

Time 
complexity Good Medium Medium 

Sliver 
tetrahedra Medium Medium Good 

Interior 
tetrahedra Good Good Good 

Boundary 
preservation Bad Bad Medium 

 

In Fig.9, a comparison of boundary preservation is processed between vtkDelaunay3D and the revised Delaunay 
algorithm. Fig.10 are the mesh results generated by the revised Delaunay algorithm of the kidney and breast data, and the 
mesh result generated by Space-Disassembling algorithm of the craniofacial data. 
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(a)                                                                                   (b) 

Fig.9.a  The white lines are the boundary triangles generated by vtkDelaunay3D, and the gray lines are the original boundary 
triangles. 

Fig.9.b  The white lines are the boundary triangles generated by the revised Delaunay algorithm, and the gray lines are the 
original boundary triangles. 

     
(a)                                                                  (b)                                                                  (c) 

Fig.10.a  The mesh result of the kidney data by the revised Delaunay algorithm, the granularity of which is 10. 

Fig.10.b  The mesh result of the breast data by the revised Delaunay algorithm, the granularity of which is 20. 

Fig.10.c The mesh result of the craniofacial data by the Space-Disassembling algorithm, the granularity of which is 10. 

And some soft-tissue deformation programs are processed based on these tetrahedral meshes. After simulation and 
analysis, we found good quality tetrahedral mesh is a critical prerequisite of these soft-tissue simulation methods. In 
FEM, sliver tetrahedra could lead to a program failure easily, because when the force is distributed on vertices of the 
tetrahedra, sliver tetrahedra could cause stress uneven, which makes the matrix computation more difficult and even 
program failure. In Mass-spring model, low quality mesh makes the elements iteration very inefficient, and could lead to 
wrong result of the deformation. If there’s a force on the vertex with an obtuse angle of a sliver tetrahedron (Fig.11), the 
triangle may flip over and never deform back because when it does, the length of the spring can be the same as the 
original length, which means reaching a new balance state. And obviously, the result is incorrect. In order to eliminate 
these problems in soft-tissue deformation, we need to use algorithms which generate tetrahedral mesh with good quality. 
And the revised Delaunay algorithm performs very well on these soft-tissue simulation programs. 
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Fig.11 Low quality tetrahedral mesh could lead to wrong result during the simulation. 

5. CONCLUSION 
After analysis and comparison the results of the experiments, one could found out that tetrahedral mesh of soft tissue 
with good quality is an important pre-requisite of the soft-tissue simulation methods. So a good tetrahedral mesh 
generation algorithm is very significant in soft-tissue deformation simulation programs like craniofacial plastic surgery 
and breast reconstruction plastic surgery. Both of the Space-Disassembling and revised Delaunay algorithm work well in 
these programs. If the organ is not very spatial complicated and boundary preservation is not a main requirement, Space-
Disassembling algorithm could be used. If the quality of all tetrahedra should be as good as possible, and the boundary 
should be preserved, the revised Delaunay algorithm could make a very good balance among these requirements. 
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